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Analysis for the xgamma distribution based on record
values and inter-record times with application to prediction

of rainfall and COVID-19 records

Zahra Khoshkhoo Amiri1, S. M. T. K. MirMostafaee2

ABSTRACT

Recently, Sen et al. (2016) introduced a new lifetime distribution, called “xgamma distribu-
tion", which can be used as an alternative to other lifetime distributions, like the exponential
one. In this paper, we study the problem of classical and Bayesian estimation of the unknown
parameter of the xgamma distribution based on record values and inter-record times. The
problem of Bayesian prediction of future record values based on record values and inter-
record times is also discussed. A small simulation study has been performed to compare
the performance of the proposed estimators and the approximate Bayes predictors. Two
real data sets related to rainfall and COVID-19 records have been analysed. We considered
four one-parameter lifetime distributions as the base models for each data set and compared
the goodness-of-fit results. Then, the numerical results of estimation of the parameter and
prediction of future records based on the xgamma and exponential records and inter-record
times were presented. We observed that the record values and inter-record times from the
xgamma distribution could predict future records in a relatively satisfactory way.

Key words: COVID-19 records, lower record values, Bayes predictive distribution, rainfall
records, xgamma distribution.

1. Introduction

The xgamma distribution was first introduced by Sen et al. (2016) and its probability
density function (PDF) is given by

f (x;θ) =
θ 2

1+θ

(
1+

θ

2
x2
)

e−θx, x > 0, θ > 0. (1)

The corresponding cumulative distribution function (CDF) is given by

F(x;θ) = 1−
1+θ +θx+ θ 2x2

2
1+θ

e−θx, x > 0, θ > 0.

If the PDF of a random variable X is expressed by (1), then we write X ∼ xgamma(θ).
Indeed, the xgamma distribution is a special mixture of the exponential and gamma distri-
butions. The hazard rate function (HRF) of the xgamma distribution can be bathtub-shaped,
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which makes it very suitable for many real lifetime phenomena. In recent years, several
studies have been carried out on the inferential problems pertaining to the xgamma distri-
bution; see for example Sen et al. (2018) and Yadav et al. (2019).

Let {Xn,n = 1,2, · · ·} be a sequence of identical and independent random variables. An
observation X j is called a lower record value if X j < Xi for all i < j. A similar definition can
be given for upper record values. The sequence of lower record values along with the inter-
record times can be given by (R,K) = {R1,K1,R2,K2, · · · ,Rm−1,Km−1,Rm} where Ri is the
i-th record value and Ki is the i-th inter-record time, which is the number of observations
after occurrence of Ri that are needed to obtain a new record value Ri+1. Record data arise
in a wide variety of practical situations; see for example Arnold et al. (1998). Record
values and the related subjects have been studied by many authors; see for example Ahmadi
and MirMostafaee (2009), MirMostafaee et al. (2016) and Fallah et al. (2018). Record
values, along with inter-record times, have become a favourite subject for many researchers
in recent decades. Samaniego and Whitaker (1986) discussed the estimation problem of the
mean parameter of the exponential distribution based on records and inter-record times. For
other examples of recent studies in this regard, see Nadar and Kızılaslan (2015), Kızılaslan
and Nadar (2016), Amini and MirMostafaee (2016), Pak and Dey (2019), Kumar et al.
(2020) and Bastan and MirMostafaee (2022).

In this paper, first, we obtain the maximum likelihood (ML) estimate of the unknown
parameter of the xgamma distribution based on lower record values and inter-record times,
and then we construct an asymptotic confidence interval (ACI) for the xgamma parameter
in Section 2. Next, we work on the Bayesian estimation of the parameter in Section 3. We
approximate the Bayes estimates with the help of the Tierney and Kadane (TK) method, im-
portance sampling (IS) method and Metropolis-Hastings (M-H) algorithm. We also discuss
the Bayesian prediction problem of future record values arising from the xgamma distribu-
tion based on observed lower record values and inter-record times in Section 4. In Section
5, a small simulation study is conducted to compare the performances of the proposed esti-
mators and approximate Bayes predictors. We analyse two real data sets that are related to
rainfall and COVID-2019 phenomena. Section 6 concludes the paper with some remarks.

2. Maximum Likelihood Estimation

In this section, we focus on the ML estimate and an ACI for the parameter. Let
{R1,K1,R2,K2, · · · ,Rm−1,Km−1,Rm} be a sequence of record data from xgamma(θ ). Then,
the likelihood function of θ given the observed lower records and inter-record times be-
comes

L(θ |r,k)=
m

∏
i=1

f (ri;θ)
[
1−F(ri;θ)

]ki−1
=

e−θ ∑
m
i=1 kiriθ 2m

(1+θ)∑
m
i=1 ki

m

∏
i=1

(
1+

θ

2
r2

i

)[
ψ(θ ,ri)

]ki−1
, (2)

where r1 > · · · > rm, km = 1, ψ(θ ,ri) = 1+θ +θri +
θ 2r2

i
2

and r = {r1, · · · ,rm} and k =

{k1, · · · ,km−1} are the observed sets of R = {R1, · · · ,Rm−1,Rm} and K = {K1, · · · ,Km−1},
respectively. Note that we always take km equal to one for simplicity of the equations.
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Consequently, the corresponding log-likelihood function is

ℓ(θ |r,k)=2m ln(θ)−
m

∑
i=1

ki ln(1+θ)−θ

m

∑
i=1

kiri +
m

∑
i=1

ln
(

1+
θr2

i
2

)
+

m

∑
i=1

(ki −1) ln
(
ψ(θ ,ri)

)
.

We take the first partial derivative of log-likelihood function with respect to (w.r.t.) θ

and then equate it with zero. Thus, we have

∂ℓ(θ |r,k)
∂θ

=
2m
θ

−
m

∑
i=1

ki

1+θ
−

m

∑
i=1

kiri +
m

∑
i=1

r2
i

2+θr2
i
+

m

∑
i=1

(ki −1)
(
1+ ri +θr2

i
)

ψ(θ ,ri)
= 0.

It seems that no explicit solution for the above equation exists, and we may use numeri-
cal techniques to calculate the ML estimate of θ .
Next, we aim at finding an ACI for the parameter θ . Here, the Fisher information is

defined by I(θ) = −E
{

∂ 2 ln fθ (R,K)
∂θ 2

}
, where fθ (r,k) is the joint probability function of

R1,K1,R2,K2, · · · ,Rm−1,Km−1,Rm, provided that the related integral exists. We have

∂ 2ℓ(θ |r,k)
∂θ 2 =−2m

θ 2 +
m

∑
i=1

ki

(1+θ)2 −
m

∑
i=1

r4
i

(2+θr2
i )

2 +
m

∑
i=1

(ki −1)
(
ψ(θ ,ri)r2

i − (1+ ri +θr2
i )

2
)[

ψ(θ ,ri)
]2 .

Let θ̂ML denote the ML estimator (MLE) of θ and zγ be the γ-th upper quantile of
the standard normal distribution. Then, the 100(1−α)% modified asymptotic two-sided
equi-tailed confidence interval (MATE CI) for θ is given by (see for example Lehmann and
Casella, 1998) (

max
{

0, θ̂ML −
z α

2√
Ĩ(θ̂ML)

}
, θ̂ML +

z α
2√

Ĩ(θ̂ML)

)
,

where Ĩ(θ̂ML) =− ∂ 2ℓ(θ |R,K)
∂θ 2

∣∣∣∣
θ=θ̂ML

.

3. Bayesian Estimation

In the context of Bayesian estimation, the information of the experimenter can be re-
vealed in the form of a probability function for the parameter, which is called the prior
distribution. Since the parameter of the xgamma distribution is positive, we consider the
popular gamma prior for θ with the following PDF

π(θ) =
ba

Γ(a)
θ

a−1e−bθ , θ > 0, (3)

where a and b are positive hyperparameters that can be determined by the prior knowledge
of the experimenter. From (2) and (3), the posterior density can be obtained as

π(θ |r,k) =
1
D

θ 2m+a−1

(1+θ)∑
m
i=1 ki

e−θ(∑m
i=1 kiri+b)

m

∏
i=1

(
1+

θ

2
r2

i

)[
ψ(θ ,ri)

]ki−1
,
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where D =
∫

∞

0
θ 2m+a−1

(1+θ)∑
m
i=1 ki

e−θ(∑m
i=1 kiri+b)

∏
m
i=1
(
1+ θ

2 r2
i
)[

ψ(θ ,ri)
]ki−1dθ . A very popular

quadratic loss function is the squared error loss function (SELF). However, the SELF is
not appropriate in many real situations, as it gives identical weights to underestimation
and overestimation. One asymmetric loss function is the linear-exponential loss function
(LELF), which was introduced by Varian (1975) and is defined by

LLE(θ , θ̂) = b
[
exp{c

(
θ̂ −θ

)
}− c

(
θ̂ −θ

)
−1
]
, b > 0, c ̸= 0,

where θ̂ is an estimator of θ . Without loss of generality, we assume b = 1. The sign
and magnitude of parameter c must be properly determined. If c is bigger than zero, then
overestimation is more serious than underestimation and vice versa (Zellner, 1986). The
Bayes estimates of θ under the SELF and LELF, become

θ̂SE =
∫

∞

0
θπ(θ |r,k)dθ =

1
D

∫
∞

0

θ 2m+a

(1+θ)∑
m
i=1 ki

e−θ(∑m
i=1 kiri+b)

m

∏
i=1

(
1+

θ

2
r2

i

)[
ψ(θ ,ri)

]ki−1dθ ,

and

θ̂LE = −1
c

lnMθ (−c|r,k) =−1
c

ln
(∫

∞

0
exp(−cθ)π(θ | r,k)dθ

)
= −1

c
ln
(

1
D

∫
∞

0

θ 2m+a−1

(1+θ)∑
m
i=1 ki

e−θ(∑m
i=1 kiri+b+c)

m

∏
i=1

(
1+

θ

2
r2

i

)[
ψ(θ ,ri)

]ki−1dθ

)
,

respectively, provided that the integrals exist.

It seems that the above Bayes estimates of θ cannot be obtained in closed forms. So, we
use three methods to find the approximate Bayes estimates of parameter θ .

3.1. Tierney and Kadane’s Approximation

For a one-parameter model, Tierney and Kadane (1986) proposed a technique to approx-
imate Bayes estimates. Let ν0(θ) =

1
n lnπ(θ | r,k) and ν∗(θ) = ν0(θ)+

1
n lng(θ). Then,

according to the TK approximation method, the approximated Bayes estimate of θ is

θ̂BT =

√
τ∗

τ0
exp
{

n [ν∗(θ ∗)−ν0(θ0)]

}
,

where θ ∗ and θ0 maximize ν∗(θ) and ν0(θ), respectively, and τ∗ and τ0 are minus the
inverse of the second derivatives of ν∗(θ) and ν0(θ) at the points θ ∗ and θ0, respectively.

We have

ν0(θ) =
1
n

[
− lnD+(2m+a−1) lnθ −

m

∑
i=1

ki ln(1+θ)−θ(
m

∑
i=1

kiri +b)+
m

∑
i=1

ln
(

1+
θ

2
r2

i

)
+

m

∑
i=1

(ki −1) ln
(
ψ(θ ,ri)

)]
.
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Therefore, θ0 can be derived from the following equation:

∂ν0(θ)

∂θ
=

1
n

[
2m+a−1

θ
− ∑

m
i=1 ki

1+θ
−

m

∑
i=1

kiri −b+
m

∑
i=1

r2
i

2+θr2
i
+

m

∑
i=1

(ki −1)(1+ ri +θr2
i )

ψ(θ ,ri)

]
=0.

Let ξ0 be the second order derivative of ν0(θ) at θ0, namely

ξ0 =
∂ 2

∂θ 2 ν0(θ)

∣∣∣∣
θ=θ0

=
1
n

[
−(2m+a−1)

θ 2 +
∑

m
i=1 ki

(1+θ)2 −
m

∑
i=1

r4
i

(2+θr2
i )

2

+
m

∑
i=1

(ki −1)
[
ψ(θ ,ri)r2

i −(1+ ri +θr2
i )

2
][

ψ(θ ,ri)
]2 ]∣∣∣∣

θ=θ0

.

Then, set τ0 = − 1
ξ0

. First, we derive the approximate Bayes estimate of θ under the
SELF. Let g(θ) = θ and θ ∗

1 be the maximum point of the following quantity:

ν
∗SE(θ) =

1
n

[
− lnD+(2m+a) lnθ −

m

∑
i=1

ki ln(1+θ)−θ(
m

∑
i=1

kiri +b)+
m

∑
i=1

ln
(

1+
θ

2
r2

i

)
+

m

∑
i=1

(ki −1) ln
(
ψ(θ ,ri)

)]
.

Then, θ ∗
1 can be derived from the following equation:

∂ν∗SE(θ)

∂θ
=

1
n

[
2m+a

θ
− ∑

m
i=1 ki

1+θ
−

m

∑
i=1

kiri −b+
m

∑
i=1

r2
i

2+θr2
i
+

m

∑
i=1

(ki −1)(1+ ri +θr2
i )

ψ(θ ,ri)

]
=0.

Let ξ ∗
SE be the second order derivative of ν∗SE(θ) at θ ∗

1 , namely

ξ
∗
SE =

∂ 2

∂θ 2 ν
∗SE(θ)

∣∣∣∣
θ=θ∗

1

=
1
n

[
−(2m+a)

θ 2 +
∑

m
i=1 ki

(1+θ)2 −
m

∑
i=1

r4
i

(2+θr2
i )

2

+
m

∑
i=1

(ki −1)
[
ψ(θ ,ri)r2

i −
(
1+ ri +θr2

i
)2 ][

ψ(θ ,ri)
]2 ]∣∣∣∣

θ=θ∗
1

.

Then, set τ∗SE =− 1
ξ ∗

SE
. So, the approximate Bayes estimate of θ under the SELF becomes

θ̂ST =

√
τ∗SE
τ0

exp
{

n
[
ν
∗SE(θ ∗

1 )−ν0(θ0)
]}

.

Next, consider the LELF and let g(θ) = e−cθ . Then, we have

ν
∗LE(θ) =

1
n

[
− lnD+(2m+a−1) lnθ −

m

∑
i=1

ki ln(1+θ)−θ(
m

∑
i=1

kiri +b+ c)

+
m

∑
i=1

ln
(

1+
θ

2
r2

i

)
+

m

∑
i=1

(ki −1) ln
(

ψ(θ ,ri)

)]
.
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The maximum point of ν∗LE(θ), denoted by θ ∗
2 , can be derived from the following

equation:

∂

∂θ
ν
∗LE(θ) =

1
n

[
2m+a−1

θ
− ∑

m
i=1 ki

1+θ
−

m

∑
i=1

kiri −b− c+
m

∑
i=1

r2
i

2+θr2
i

+
m

∑
i=1

(ki −1)(1+ ri +θr2
i )

ψ(θ ,ri)

]
= 0.

Let ξ ∗
LE be the second order derivative of ν∗LE(θ) at θ ∗

2 , namely

ξ
∗
LE =

∂ 2

∂θ 2 ν
∗LE(θ)

∣∣∣∣
θ=θ∗

2

=
1
n

[
−(2m+a−1)

θ 2 +
∑

m
i=1 ki

(1+θ)2 −
m

∑
i=1

r4
i

(2+θr2
i )

2

+
m

∑
i=1

(ki −1)
[
ψ(θ ,ri)r2

i −(1+ ri +θr2
i )

2
][

ψ(θ ,ri)
]2 ]∣∣∣∣

θ=θ∗
2

.

Then, set τ∗LE =− 1
ξ ∗

LE
and the approximate Bayes estimate of θ under the LELF becomes

θ̂LT =−1
c

ln
(√

τ∗LE
τ0

exp
{

n
[
ν
∗LE(θ ∗

2 )−ν0(θ0)
]})

.

3.2. Importance Sampling Method

Another well-known method of approximating Bayes point estimates is the importance
sampling method; see for example Albert (2009, Section 5.9). The posterior density func-
tion of θ given r and k, can be rewritten as

π(θ |r,k)=g(θ |r,k)h(θ ,r,k)= θ 2m+a−1

D(1+θ)∑
m
i=1 ki

e−θ(∑m
i=1 kiri+b)

m

∏
i=1

(
1+

θ

2
r2

i

)[
ψ(θ ,ri)

]ki−1
,

where g(θ |r,k) is the gamma density with parameters a+2m and ∑
m
i=1 kiri +b and

h(θ ,r,k) =
Γ(a+2m)

D(∑m
i=1 kiri +b)a+2m (1+θ)∑

m
i=1 ki

m

∏
i=1

(
1+

θ

2
r2

i

)[
ψ(θ ,ri)

]ki−1
.

Algorithm 1:
Step 1. Generate θ1 from g(θ |r,k).
Step 2. Repeat Step 1, N times to obtain θ1, ...,θN , where N is a large number.
Step 3. The approximate Bayes estimates of θ under the SELF and LELF are given by

θ̂SI =
∑

N
i=1 h(θi,r,k)θi

∑
N
j=1 h(θ j,r,k)

=
N

∑
i=1

θiwi,
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and

θ̂LI =−1
c

ln

(
∑

N
i=1 e−cθih(θi,r,k)
∑

N
j=1 h(θ j,r,k)

)
=−1

c
ln

(
N

∑
i=1

exp(−cθi)wi

)
,

respectively, where

wi =
h(θi,r,k)

∑
N
j=1 h(θ j,r,k)

, i = 1, · · · ,N. (4)

Let {θ1, · · · ,θN} be the generated sample using the IS method and θ(1) ≤ ·· · ≤ θ(N) be
the corresponding ordered values of {θ1, · · · ,θN}. Let

w∗
i =

h(θ(i),r,k)
∑

N
j=1 h(θ j,r,k)

, i = 1, · · · ,N.

Consider the following intervals

L j(N) =
(

θ̂
( j

N ), θ̂
(

j+[(1−α)N]
N )

)
, j = 1,2, ...,N − [(1−α)N],

where [x] denotes the integer part of x and θ̂ (α) = θ(i) if ∑
i−1
j=1 w∗

j < α ≤ ∑
i
j=1 w∗

j . Then, the
100(1−α)% Chen and Shao shortest width credible interval (CSSW CrI) for θ is given by
Lq(N), where q is selected so that (Chen and Shao, 1999)

θ̂
(

q+[(1−α)N]
N )− θ̂

( q
N ) = min

1≤ j≤N−[(1−α)N]
θ̂
(

j+[(1−α)N]
N )− θ̂

( j
N ).

3.3. Metropolis-Hastings Method

The Metropolis-Hastings (M-H) method was originally proposed by Metropolis et al.
(1953) and then was generalized by Hastings (1970). One M-H algorithm for our case can
be summarized as follows.

Algorithm 2:
Step 1. Start with an initial guess θ0 = θ̂ML and set t = 1.
Step 2. Given θt−1, generate θ ∗ from the truncated-normal distribution, N(θt−1,σ

2)I{θ>0}.

Then, set θt = θ ∗ with probability

P = min
{

π(θ ∗ | r,k)q(θ t−1 | θ ∗)

π(θ t−1 | r,k)q(θ ∗ | θ t−1)
,1
}
,

where q(x | b) is the density of N(b,σ2)I{x>0}, otherwise set θt = θt−1.
Step 3. Set t = t + 1 and repeat Step 2, T times, where T is a large number. Then,
{θM+1,θM+2, · · · ,θT} is the generated sample, where M is a burn-in period. Now, the ap-
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proximated Bayes point estimates of θ under the SELF and LELF are given by

θ̂SM =
1

M∗

T

∑
t=M+1

θt , and θ̂LM =−1
c

ln
(

1
M∗

T

∑
t=M+1

e−cθt

)
,

respectively, where M∗ = T −M. We have taken σ2 = 1 in Section 5.
Let θ(1) ≤ ·· · ≤ θ(M∗) be the corresponding ordered values of {θM+1, · · · ,θT}. Consider

the intervals L j(M∗) =
(
θ( j), θ( j+[(1−α)M∗])

)
for j = 1,2, ...,M∗ − [(1 − α)M∗], then the

100(1−α)% CSSW CrI for θ can be reported as Lq(M∗), where q is selected so that (Chen
and Shao, 1999)

θ(q+[(1−α)M∗])−θ(q) = min
1≤ j≤M∗−[(1−α)M∗]

θ( j+[(1−α)M∗])−θ( j).

4. Bayesian Prediction

Suppose that R1,K1,R2,K2, · · · ,Rm−1,Km−1,Rm are a sequence of available record data
from xgamma(θ ) and we wish to predict the s-th unobserved record value, denoted by
Rs(s > m). The conditional density function of Rs given r and k is given by

f (rs|θ ,r,k) =
f (rs;θ)[Q(rs,θ)−Q(rm,θ)]

s−m−1

Γ(s−m)F(rm;θ)

=
[Q(rs,θ)−Q(rm,θ)]

s−m−1

Γ(s−m)

(
1− ψ(θ ,rm)

(1+θ)
e−θrm

)−1
θ 2

1+θ

(
1+

θ

2
r2

s

)
e−θrs ,

(5)

where 0 < rs < rm, Q(rs,θ) =− lnF(rs;θ) and ψ(θ ,rm) = 1+θ +θrm +
θ 2r2

m

2
.

Then, from (5), the Bayes predictive density function of Rs is derived as

h(rs | r,k) =
∫

∞

0
f (rs | θ ,r,k)π(θ | r,k)dθ .

The predictions of Rs under the SELF and LELF can be given by R̂S
s =

∫ rm
0 rsh(rs |

r,k)drs, and R̂L
s =− 1

c ln
∫ rm

0 e−crs h(rs | r,k)drs, respectively. It seems that the Bayes predic-
tive density function of Rs cannot be obtained analytically. Therefore, we approximate h(rs |
r,k) using the IS and M-H methods. Assume that {θi, i = 1, ...,N} and {θt , t =M+1, ...,T}
are the generated samples using the IS and M-H procedures, respectively. Then, the esti-
mates of h(rs | r,k) using these generated samples are given by

ĥIM(rs | r,k) =
N

∑
i=1

wi f (rs | θi,r,k), and ĥMH(rs | r,k) =
1

M∗

T

∑
t=M+1

f (rs | θt ,r,k),

respectively, where wi is defined in (4).
Now, using the generated sample obtained by the IS method, the approximate predic-
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tions of Rs under the SELF and LELF are, respectively, given by (provided that they exist)

R̂SI
s =

N

∑
i=1

wi

∫ rm

0
rs f (rs | θi,r,k)drs, and R̂LI

s =−1
c

ln
{ N

∑
i=1

wi

∫ rm

0
e−crs f (rs|θi,r,k)drs

}
.

Using the generated sample obtained by the M-H method, the approximate predictions
of Rs under the SELF and LELF are, respectively, given by (provided that they exist)

R̂SM
s =

1
M∗

T

∑
t=M+1

∫ rm

0
rs f (rs | θt ,r,k)drs,

and

R̂LM
s = −1

c
ln
{

1
M∗

T

∑
t=M+1

∫ rm

0
e−crs f (rs | θt ,r,k)drs

}
.

The 100(1−α)% Bayesian prediction interval (BPI) for Rs is given by (L(R,K),U(R,K)),
where the prediction limits L(r,k) and U(r,k) can be obtained by solving the following
nonlinear equations simultaneously (see for example Pak and Dey (2019))∫ L(r,k)

0
h(rs | r,k)drs =

α

2
, and

∫ U(r,k)

0
h(rs | r,k)drs = 1− α

2
.

Therefore, the 100(1−α)% approximate BPI (ABPI) for Rs, denoted by (L∗,U∗), based
on the IS method, can be obtained by solving the following equations simultaneously:

N

∑
i=1

wi

∫ L∗

0
f (rs | θi,r,k)drs =

α

2
, and

N

∑
i=1

wi

∫ U∗

0
f (rs | θi,r,k)drs = 1− α

2
.

Besides, the 100(1−α)% ABPI for Rs, denoted as (L∗∗,U∗∗), based on the M-H method,
can be obtained by solving the following equations simultaneously (see for example AL-
Hussaini and Al-Awadhi (2010)):

1
M∗

T

∑
t=M+1

∫ L∗∗

0
f (rs | θt ,r,k)drs =

α

2
, and

1
M∗

T

∑
t=M+1

∫ U∗∗

0
f (rs | θt ,r,k)drs = 1− α

2
.

5. Numerical Illustration

In this section, we provide a simulation study and two real data examples.

5.1. Simulation Study

Here, we perform a Monte Carlo simulation to assess the point and interval estimators
and approximate predictors that are developed in this paper. In this simulation study, the
number of replications is taken to be N∗ = 5000. We generate (m+1) records and their cor-
responding inter-record times from xgamma(θ ) in each replication, where two values are
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considered for m, namely m = 5 and 7 and the parameter values are selected to be θ = 0.5
and 1.5. In the context of the Bayesian inference, we use two priors: Prior I: In this prior,
the hyperparameters are determined so that the prior mean equals the true value of the pa-
rameter and the prior variance equals 1. Thus, for θ = 0.5, we have (a,b) = (0.25,0.5),
and for θ = 1.5, we have (a,b) = (2.25,1.5). Prior II: In this prior, the hyperparameters
are determined so that the prior mean equals the true value of the parameter and the prior
variance equals 100. Thus, for θ = 0.5 we have (a,b) = (0.0025,0.005), and for θ = 1.5 we
have (a,b) = (0.0225,0.015). We compute the ML estimates and the approximate Bayes
estimates under the TK, IS and M-H methods based on the generated first m records and
(m− 1) record times. Besides, the Geweke test (see Geweke, 1992), Raftery and Lewis’s
diagnostic (see Raftery and Lewis, 1992, 1996) and Heidelberger and Welch’s convergence
diagnostic (see Heidelberger and Welch, 1983) are used to check the convergence of the
generated M-H Markov chains. Note that Heidelberger and Welch (1983) used or hinted the
results of Schruben et al. (1980), Heidelberger and Welch (1981a, 1981b), Schruben (1982)
and Schruben et al. (1983). In some cases, we have taken every second or third sampled
value (and increase the number of sampled values accordingly) to achieve a convergent M-
H Markov chain. All the final chains have sizes equal to 10000. The performance of the
competitive estimators has been compared in terms of their estimated risks (ERs). In ad-
dition, the average width (AW) and coverage probability (CP) criteria have been employed
to evaluate the interval estimators and predictors. Let θ̂ be an estimator of θ and θ̂i be the
corresponding estimate derived in the i-th replication. Then, the ERs of θ̂ w.r.t. the SELF
and LELF functions are, respectively, given by

ERS(θ̂) =
1

N∗

N∗

∑
i=1

(θ̂i −θ)2, and ERL(θ̂) =
1

N∗

N∗

∑
i=1

(
exp[c(θ̂i −θ)]− c(θ̂i −θ)−1

)
. (6)

The approximate point and interval predictions for the (m+1)-th record value, namely
Rm+1 are calculated as well. In the context of prediction, the evaluation is based on the
estimated prediction risks (EPRs) w.r.t. to the SELF and LELF for the point predictors,
which are formulated similarly to (6). The simulation results have been presented in Tables
1-3 for the point estimators and in Table 4 for the interval estimators. The results for the
prediction have been presented in Tables 5-8. From Tables 1-8, we extract the following
conclusions:

• The ERs of Prior I are less than those of Prior II in the most cases, as expected, since
Prior I is more informative than Prior II, however, the EPRs of Prior I are very close
to those of Prior II. Besides, the Bayesian credible intervals of Prior I have smaller
AWs than those of Prior II, however, the AWs of the ABPIs of Prior I are very close
to those of Prior II.

• The ERs of the point estimators and EPRs of the predictors are decreasing w.r.t. the
number of records in the most cases, as expected. Besides, the AWs of the interval
estimators and the ABPIs are decreasing w.r.t. the number of records.
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Table 1: The ERs of the point estimators of θ when θ = 0.5.

Prior I Prior II
ERL ERL ERL ERL

m = 5 ERS c = 0.5 c =−0.5 ERS c = 0.5 c =−0.5

θ̂ML 0.0357 0.0048 0.0042 0.0357 0.0048 0.0042
θ̂ST 0.0329 0.0044 0.0039 0.0358 0.0048 0.0042
θ̂LT (c = 0.5) 0.0303 0.0040 0.0036 0.0328 0.0044 0.0038
θ̂LT (c =−0.5) 0.0357 0.0048 0.0042 0.0390 0.0053 0.0045
θ̂SI 0.0330 0.0044 0.0039 0.0359 0.0049 0.0042
θ̂LI(c = 0.5) 0.0305 0.0041 0.0036 0.0330 0.0044 0.0039
θ̂LI(c =−0.5) 0.0359 0.0048 0.0042 0.0392 0.0053 0.0045
θ̂SM 0.0186 0.0024 0.0023 0.0356 0.0048 0.0041
θ̂LM(c = 0.5) 0.0176 0.0023 0.0021 0.0327 0.0044 0.0038
θ̂LM(c =−0.5) 0.0198 0.0026 0.0024 0.0388 0.0053 0.0045
m = 7
θ̂ML 0.0220 0.0029 0.0026 0.0220 0.0029 0.0026
θ̂ST 0.0209 0.0027 0.0025 0.0220 0.0029 0.0026
θ̂LT (c = 0.5) 0.0198 0.0026 0.0024 0.0208 0.0027 0.0025
θ̂LT (c =−0.5) 0.0220 0.0029 0.0026 0.0232 0.0031 0.0028
θ̂SI 0.0212 0.0028 0.0025 0.0223 0.0029 0.0027
θ̂LI(c = 0.5) 0.0201 0.0026 0.0025 0.0211 0.0028 0.0025
θ̂LI(c =−0.5) 0.0224 0.0030 0.0027 0.0236 0.0031 0.0028
θ̂SM 0.0124 0.0016 0.0015 0.0218 0.0029 0.0026
θ̂LM(c = 0.5) 0.0121 0.0015 0.0015 0.0207 0.0027 0.0025
θ̂LM(c =−0.5) 0.0128 0.0016 0.0016 0.0231 0.0030 0.0027

• We see that the M-H method leads to the smaller ERs in comparison with the TK
and IS methods in the most cases. Besides, the M-H method produces estimators that
have ERs which are smaller than or close to those of the ML method in more than
50% of the cases.

5.2. Example 1 (Real Data Set 1)

Here, we consider the following data on the amount of rainfall (in inches) recorded at the
Los Angeles Civic Center in February from 1998 to 2018; see the website of Los Angeles
Almanac: www.laalmanac.com/weather/we08aa.php.

0.56, 5.54, 8.87, 0.29, 4.64, 4.89, 11.02, 2.37, 0.92, 1.64,
3.57, 4.27, 3.29, 0.16, 0.20, 3.58, 0.83, 0.79, 4.17, 0.03.

First, we compare the fit of the xgamma distribution with three other one-parameter
lifetime distributions, listed as follows:
(i) The exponential distribution with a scale parameter θ .
(ii) The Lindley distribution with parameter θ whose PDF is given by (Lindley, 1958 and
Ghitany et al., 2008)

fLindley(x) =
θ 2

1+θ
(1+ x)e−θx, θ > 0, x > 0.
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Table 2: The ERs of the point estimators of θ when θ = 1.5.

Prior I Prior II
ERL ERL ERL ERL

m = 5 ERS c = 0.5 c =−0.5 ERS c = 0.5 c =−0.5

θ̂ML 0.5901 0.1251 0.0549 0.5901 0.1251 0.0549
θ̂ST 0.2312 0.0337 0.0255 0.6104 0.1293 0.0566
θ̂LT (c = 0.5) 0.1808 0.0253 0.0207 0.4152 0.0721 0.0418
θ̂LT (c =−0.5) 0.3026 0.0461 0.0323 1.0359 2.1959 0.0814
θ̂SI 0.2299 0.0335 0.0254 0.6078 0.1316 0.0563
θ̂LI(c = 0.5) 0.1810 0.0254 0.0207 0.4205 0.0751 0.0421
θ̂LI(c =−0.5) 0.3028 0.0462 0.0323 1.0289 1.4503 0.0814
θ̂SM 0.3965 0.0446 0.0555 0.5465 0.1078 0.0520
θ̂LM(c = 0.5) 0.4156 0.0466 0.0583 0.3810 0.0640 0.0390
θ̂LM(c =−0.5) 0.3771 0.0425 0.0526 0.8752 0.3042 0.0738
m = 7
θ̂ML 0.3073 0.0510 0.0319 0.3073 0.0510 0.0319
θ̂ST 0.1741 0.0248 0.0196 0.3160 0.0526 0.0327
θ̂LT (c = 0.5) 0.1453 0.0201 0.0168 0.2481 0.0384 0.0268
θ̂LT (c =−0.5) 0.2119 0.0311 0.0233 0.4148 0.0794 0.0407
θ̂SI 0.1738 0.0247 0.0196 0.3146 0.0524 0.0326
θ̂LI(c = 0.5) 0.1456 0.0201 0.0168 0.2487 0.0385 0.0268
θ̂LI(c =−0.5) 0.2123 0.0311 0.0233 0.4152 0.0795 0.0408
θ̂SM 0.4584 0.0512 0.0645 0.2868 0.0463 0.0302
θ̂LM(c = 0.5) 0.4723 0.0527 0.0666 0.2289 0.0346 0.0250
θ̂LM(c =−0.5) 0.4443 0.0497 0.0625 0.3743 0.0675 0.0375

Table 3: The AWs and CPs of the 95% interval estimators of θ .

Prior I Prior II

θ m MATE CI IS method M-H method IS method M-H method

0.5 5 0.6162 (0.9662) 0.5783 (0.9336) 0.5377 (0.9498) 0.5877 (0.9326) 0.5965 (0.9548)
7 0.4987 (0.9566) 0.4652 (0.9140) 0.4421 (0.9408) 0.4691 (0.9120) 0.4860 (0.9486)

1.5 5 2.2977 (0.9650) 1.8428 (0.9746) 0.9582 (0.2540) 2.1983 (0.9542) 2.1713 (0.9542)
7 1.8139 (0.9598) 1.5702 (0.9670) 0.7843 (0.0246) 1.7560(0.9516) 1.7359 (0.9518)
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Table 4: The EPRs of approximate predictors of Rm+1 when θ = 0.5.

Prior I Prior II

EPRL EPRL EPRL EPRL

m = 5 EPRS c = 0.5 c =−0.5 EPRS c = 0.5 c =−0.5

R̂SI
m+1 0.0180 0.0023 0.0023 0.0180 0.0023 0.0023

R̂LI
m+1(c = 0.5) 0.0184 0.0022 0.0024 0.0184 0.0022 0.0024

R̂LI
m+1(c =−0.5) 0.0184 0.0024 0.0022 0.0184 0.0024 0.0022

R̂SM
m+1 0.0180 0.0023 0.0023 0.0180 0.0023 0.0023

R̂LM
m+1(c = 0.5) 0.0183 0.0022 0.0024 0.0184 0.0022 0.0024

R̂LM
m+1(c =−0.5) 0.0184 0.0024 0.0022 0.0184 0.0024 0.0022

m = 7

R̂SI
m+1 0.0018 0.0002 0.0002 0.0018 0.0002 0.0002

R̂LI
m+1(c = 0.5) 0.0017 0.0002 0.0002 0.0017 0.0002 0.0002

R̂LI
m+1(c =−0.5) 0.0019 0.0003 0.0002 0.0019 0.0003 0.0002

R̂SM
m+1 0.0018 0.0002 0.0002 0.0018 0.0002 0.0002

R̂LM
m+1(c = 0.5) 0.0017 0.0002 0.0002 0.0017 0.0002 0.0002

R̂LM
m+1(c =−0.5) 0.0019 0.0003 0.0002 0.0019 0.0003 0.0002

Table 5: The EPRs of approximate predictors of Rm+1 when θ = 1.5.

Prior I Prior II

EPRL EPRL EPRL EPRL

m = 5 EPRS c = 0.5 c =−0.5 EPRS c = 0.5 c =−0.5

R̂SI
m+1 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001

R̂LI
m+1(c = 0.5) 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001

R̂LI
m+1(c =−0.5) 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001

R̂SM
m+1 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001

R̂LM
m+1(c = 0.5) 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001

R̂LM
m+1(c =−0.5) 0.0005 0.0001 0.0001 0.0005 0.0001 0.0001

m = 7

R̂SI
m+1 0.00007 0.00001 0.00001 0.00007 0.00001 0.00001

R̂LI
m+1(c = 0.5) 0.00007 0.00001 0.00001 0.00007 0.00001 0.00001

R̂LI
m+1(c =−0.5) 0.00007 0.00001 0.00001 0.00007 0.00001 0.00001

R̂SM
m+1 0.00007 0.00001 0.00001 0.00007 0.00001 0.00001

R̂LM
m+1(c = 0.5) 0.00007 0.00001 0.00001 0.00007 0.00001 0.00001

R̂LM
m+1(c =−0.5) 0.00007 0.00001 0.00001 0.00007 0.00001 0.00001
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Table 6: The AWs and CPs of the 95% ABPIs of Rm+1.

Prior I Prior II

θ m IS method M-H method IS method M-H method

0.5 5 0.2001 (0.9514) 0.2001 (0.9514) 0.2001 (0.9514) 0.2001 (0.9514)
7 0.0477 (0.9566) 0.0477 (0.9566) 0.0477 (0.9566) 0.0477 (0.9566)

1.5 5 0.0355 (0.9500) 0.0356 (0.9498) 0.0355 (0.9500) 0.0355 (0.9500)
7 0.0087 (0.9500) 0.0087 (0.9500) 0.0087 (0.9500) 0.0087 (0.9500)

(iii) The Shanker distribution with the following PDF (Shanker, 2015):

fShanker(x) =
θ 2

1+θ 2 (θ + x)e−θx, θ > 0, x > 0.

We use the ML method to obtain the parameter estimate. We use the Kolmogorov-
Smirnov (K-S) test and the corresponding p-value, Akaike information criterion (AIC),
Bayesian information criterion (BIC) and Hannan-Quinn information criterion (HQIC) to
compare the fits of the considered distributions and the results have been given in Table 9.
From Table 9, we observe that the xgamma and exponential models fit the data better than
the Lindley and Shanker models, as they have smaller AICs, BICs, HQICs and K-S test
statistics.

Table 7: MLEs and goodness-of-fit statistics for Example 1.

Distribution MLE AIC BIC HQIC K-S p-value

xgamma 0.6895 87.0868 88.0826 87.2812 0.1925 0.3978
exponential 0.3245 87.0166 88.0123 87.2110 0.1561 0.6575
Lindley 0.5358 89.0368 90.0325 89.2312 0.2068 0.3141
Shanker 0.5874 90.4794 91.4752 90.6738 0.2010 0.3465

We have extracted the lower records and the corresponding inter-record times as follows:

i 1 2 3 4
ri 0.56 0.29 0.16 0.03

ki 3 10 6 1

We have considered both the exponential and xgamma models, as we see that these mod-
els fit the data well. Here, we have used the approximate non-informative prior with the prior
mean equal to 1.5 and the prior variance equal to 100, so we have (a,b) = (0.0225,0.0150).
We have calculated the ML and approximate Bayes point estimates, as well as the 95% in-
terval estimates of the parameter for both exponential and xgamma distributions. The point
predictions and 95% ABPIs for the next future record, namely R5, have been obtained as
well. We have used the M-H method for the Bayesian estimation and prediction for the
xgamma distribution. However, the Bayesian estimates of the unknown parameter for the
exponential distribution have explicit forms, and we have also used the function integrate in
R to evaluate predictions and ABPIs for the exponential distribution. The numerical results
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of this example have been given in Table 10. From Table 10, we see that all the predictions
and ABPIs are too close to each other in both exponential and xgamma distributions. Here,
we predict that the next lowest amount of rainfall (after the year 2018) would be approxi-
mately 0.015 inches, which is the predicted 5-th lower record value since 1998.

Table 8: The numerical results of Example 1.

θ̂LE θ̂LE

Estimation θ̂ML θ̂SE (c = 0.5) (c =−0.5) MATE CI

xgamma 1.3467 1.3293 1.2749 1.3904 (0.3999, 2.2935)
exponential 0.7181 0.7202 0.6898 0.7545 (0.0144, 1.4219)

R̂L
5 R̂L

5
Prediction R̂S

5 (c = 0.5) (c =−0.5) ABPI

xgamma 0.0148 0.0149 0.0149 (0.0007, 0.0292)
exponential 0.0149 0.0149 0.0150 (0.0007, 0.0292)

5.3. Example 2 (Real Data Set 2)

The second data set includes daily numbers of deaths due to the COVID-19 virus in
Poland from 1 September 2020 to 1 October 2020; see the website of COVID-19 data:
https://ourwordindata. org/coronavirus-source-data. The data are:

19, 20, 14, 8, 13, 7, 4, 12, 11, 12, 10, 13, 6, 15, 24, 10,
16, 17, 12, 11, 5, 18, 28, 25, 23, 32, 8, 15, 36, 30, 30.

Despite the fact that the daily numbers of deaths possess a discrete nature, several au-
thors have fitted continuous distributions to this type of data sets; see for example El-Monsef
et al. (2021). Now, if we observe the number of deaths on a specified day, then we may
ask what the next lower number would be and become interested in predicting the next fu-
ture lower record. Once again, we fitted the xgamma, exponential, Lindley and Shanker
models to the above data and the related results have been given in Table 11. We see that
the xgamma distribution fits the data best among the four considered models. Note that
the exponential model does not fit the data significantly based on the K-S test at the level
α = 0.05. However, proceeding the same line of Example 1, we consider both xgamma and
exponential models to analyse the record data. We observe that the lowest record occurred
on 7 September 2020, so we can consider only the following data:

19, 20, 14, 8, 13, 7, 4.

The extracted lower records and the corresponding inter-record times from the above
data are as follows:

i 1 2 3 4 5
ri 19 14 8 7 4

ki 2 1 2 1 1
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We intend to predict the 5-th lower record value based on the first 4 observed records.
Here, we have used informative priors whose prior means are taken to be the corresponding
ML estimates approximately and the prior variance is equal to a value close to 0.4 (see
Yadav et al., 2019). So, we obtain a prior with (a,b) = (0.0702,0.4255) for the xgamma
distribution and another prior with (a,b) = (0.0094,0.1537) for the exponential model. We
have calculated the ML and approximate Bayes point estimates, as well as the 95% interval
estimates of the parameter for both the exponential and xgamma distributions. The point
predictions and 95% ABPIs for the next future record, namely R5, have been obtained as
well. The numerical results of Example 2 have been given in Table 12. From Table 12, we
see that all the approximate predictions are somehow close to 4, which is the true value of
R5. Besides, the ABPIs contain the true value of R5.

Table 9: MLEs and goodness-of-fit statistics for Example 2.

Distribution MLE AIC BIC HQIC K-S p-value

xgamma 0.1702 221.2816 222.7156 221.749 0.1334 0.6393
exponential 0.0615 236.8925 238.3265 237.36 0.2658 0.0249
Lindley 0.1165 223.8098 225.2438 224.2773 0.1694 0.3358
Shanker 0.1218 221.9618 223.3958 222.4293 0.2177 0.1057

Table 10: The numerical results of Example 2.

θ̂LE θ̂LE

Estimation θ̂ML θ̂SE (c = 0.5) (c =−0.5) MATE CI

xgamma 0.1750 0.1705 0.1699 0.1711 (0.0780, 0.2719)
exponential 0.0533 0.0554 0.0552 0.0556 (0.0011, 0.1056)

R̂L
5 R̂L

5
Prediction R̂S

5 (c = 0.5) (c =−0.5) ABPI
xgamma 3.8454 2.8450 4.7229 (0.2050, 6.8675)
exponential 3.2757 2.3813 4.2395 (0.1453, 6.7882)

6. Concluding Remarks

Recently, the xgamma distribution, which is a flexible distribution for lifetime phenom-
ena, has been introduced by Sen et al. (2016). In this paper, first, we derived the ML estimate
of the xgamma parameter based on record values and the corresponding inter-record times.
Then, we focused on the Bayesian estimation of the parameter, and we used a symmetric
loss function as well as an asymmetric one. The Bayesian point estimates involve compli-
cated integrals that do not seem to have closed forms, so we have used the TK, IS and M-H
methods, to evaluate them. We have also become involved in predicting future records, as
the prediction of future records has attracted the researchers’ attention in applied situations.

A simulation study has been conducted in order to assess the point and interval esti-
mators of the unknown parameter of the xgamma distribution and the point and interval
predictors of a future lower record value. From the simulation study, we conclude that the
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number of observed records and the values of hyperparameters affect the performance of
the estimators and predictors. Two real data sets have been analysed, where the first one in-
cludes the rainfall data. Here, a lower record value can be a warning about a future drought.
The second data set involves the daily numbers of deaths in Poland due to the COVID-19
virus, where the lower records can show whether the virus can become under control or not.
We compared the fits of the xgamma distribution with three other one-parameter lifetime
distributions, and we observed the xgamma fitted both data sets well enough. Taking this
information into account, we analysed the record data with the help of both the xgamma
and exponential distributions through classical and Bayesian methods. We observe that the
prediction results based on both the xgamma and exponential distributions are too close to
each other for the rainfall data, and they are not much different from each other for the
COVID-19 data. Besides, the obtained predicted values of the 5-th lower record are close
to the true value of R5 for the COVID-19 data, which confirms that the theoretical results of
the paper may perform well in prediction. Summing up, we may conclude that the results of
this paper may be useful in the estimation and prediction in real phenomena. All the com-
putations of the paper were done using Maple 2016 and the statistical software R (R Core
Team, 2020), and the packages coda (see Plummer et al., 2006, 2018), nleqslv (see Hassel-
man, 2018), truncnorm (see Mersmann et al., 2018) and AdequacyModel (see Marinho et
al., 2013) therein.
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